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ABSTRACT
We explore the challenge of preserving patients’ privacy in
electronic health record systems. We argue that security in
such systems should be enforced via encryption as well as ac-
cess control. Furthermore, we argue for approaches that en-
able patients to generate and store encryption keys, so that
the patients’ privacy is protected should the host data center
be compromised. The standard argument against such an
approach is that encryption would interfere with the func-
tionality of the system. However, we show that we can build
an efficient system that allows patients both to share partial
access rights with others, and to perform searches over their
records. We formalize the requirements of a Patient Con-
trolled Encryption scheme, and give several instantiations,
based on existing cryptographic primitives and protocols,
each achieving a different set of properties.

Categories and Subject Descriptors
E.3 [Data Encryption]: Public key cryptosystems

General Terms
Security, Algorithms, Design

1. INTRODUCTION
On February 13, 2009, U.S. President Barack Obama

signed into law the American Recovery and Reinvestment
Act of 2009, which contained provisions authorizing the fed-
eral government to spend 19 billion dollars to digitize U.S.
health records. President Obama stated, “We will make the
immediate investments necessary to ensure that within five
years all of America’s medical records are computerized,”
and that digital medical records could prevent medical er-
rors, save lives, and create hundreds of thousands of jobs.1

Moving to electronic health records is important to the mod-
ernization and revamping of our healthcare system, but solv-

1“Privacy Issue Complicates Push to Link Medical Data”,
Robert Pear, New York Times, January 17, 2009.
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ing the great challenges of ensuring the safety, security, and
privacy of patients is equally critical, of which the federal
government is acutely aware.2

Computerized medical records are open to potential abuses
and threats. Some have pointed out that large amounts of
sensitive healthcare information held in data centers is vul-
nerable to loss, leakage, or theft.3 “In the last few years,
personal health information on hundreds of thousands of
people has been compromised because of security lapses at
hospitals, insurance companies and government agencies.”4

Medical data is also susceptible to misuse by those seek-
ing to profit from it. For example, some companies make
a business of buying and selling doctors’ prescribing habits
to pharmaceutical companies.5 There are also intrinsic legal
results. World Privacy Forum warns that sensitive electronic
data, especially when stored by a third party, is vulnerable
to blind subpoena or change in user agreements. Businesses
such as hospitals and law firms, which are required by law
to respect users’ privacy, “may be at risk of a lawsuit sim-
ply for using a cloud computing service, even if information
is not leaked.”6 Furthermore, disputes among lawmakers
seeking to regulate the computerization of medical records
and lobbyists from pharmaceutical companies and insurance
companies may delay or derail effective privacy safeguards
from being put in place to protect patients’ rights and safety.

Given the plan to widely deploy electronic medical records
systems, challenges of interoperability and standardization
come to the fore. In the absence of regulations which assure
patient privacy, standards for interoperability may impose
designs that limit that privacy. On the other hand, the focus
of attention on potential standards and interoperability pro-
vides a rich context of developing systems that can protect
privacy as data flows across multiple systems.

Today, many organizations provide electronic medical

2Quoting from the ARR Act of 2009, p. 117. Specific objec-
tives include “(iii) The incorporation of privacy and security
protections for the electronic exchange of an individual’s
individually identifiable health information. (iv) Ensuring
security methods to ensure appropriate authorization and
electronic authentication of health information and specify-
ing technologies or methodologies for rendering health infor-
mation unusable, unreadable, or indecipherable.”
3Data Hemorrhages in the Health-Care Sector, M. Eric
Johnson, Forthcoming in Financial Cryptography and Data
Security, February 22-25, 2009.
4“Privacy Issue”, Robert Pear, New York Times, January
17, 2009.
5ibid.
6“Does Cloud Computing Mean More Risks to Privacy?”,
Saul Hansell, New York Times, February 23, 2009.
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records (EMR) solutions. The primary method of guaran-
teeing privacy in today’s systems is access control. In a
system which relies solely on access control, the servers that
store data run an access control program, which verifies that
any party accessing a patient’s healthcare record has appro-
priate permissions. These access control systems keep a log
of all accesses, and communications are securely encrypted.
Overall, this has been a fairly effective approach. However,
patients must trust the third party storing their data with
their private health record. If a data center is compromised,
patients’ private data may be revealed.

Given the weaknesses of access control, we propose that
an electronic health record system should encrypt records
in addition to restricting access. But who should hold the
decryption keys in such systems? If the server itself holds
the key, then it will be similarly vulnerable to the theft and
compromise issues that can challenge access-centric systems,
as the key might be stolen along with the encrypted data.
Similarly, such a storage design will be vulnerable to privacy
and trust issues. Thus, we propose instead that each patient
should generate her own decryption key, and use that key to
encrypt her records.

Encryption schemes with strong security properties will
guarantee that the patient’s privacy is protected (assum-
ing that the patient stores the key safely; see section 3.1
for discussion). However, adherence to a simple encryption
scheme can interfere with the desired functionality of health
record systems. In particular, we would like to employ en-
cryption, yet support such desirable functions as allowing
users to share partial access rights with others and to per-
form various searches over their records. In what follows, we
consider encryption schemes that enable patients to delegate
partial decryption rights, and that allow patients (and their
delegates) to search over their health data.

We shall propose a design that we refer to as Patient Con-
trolled Encryption (PCE) as a solution to secure and private
storage of patients’ medical records. PCE allows the patient
to selectively share records among doctors and healthcare
providers. The design of the system is based on a hierarchi-
cal encryption system. The patient’s record is partitioned
into a hierarchical structure, each portion of which is en-
crypted with a corresponding key. The patient is required
to store a root secret key, from which a tree of subkeys is
derived. The patient can selectively distribute subkeys for
decryption of various portions of the record. The patient
can also generate and distribute trapdoors for selectively
searching portions of the record. Our design prevents unau-
thorized access to patients’ medical data by data storage
providers, healthcare providers, pharmaceutical companies,
insurance companies, or others who have not been given the
appropriate decryption keys.

Related work.
We note that hierarchical access control via encryption is

not a new idea. Akl and Taylor [2] and later Sadhu [16]
propose constructions based on one-way functions which are
very similar to what we describe in Section 4.2. More re-
cently, Hengartner and Steenkiste proposed a scheme for
encryption-based access control based on hierarchical IBE
[13]. Atallah et al present a symmetric key scheme which
allows not only for tree-based hierarchies, but also for arbi-
trary acyclic graphs [3]. Finally, recent work on attribute-
based encryption [15, 12] enables encryption-based access
control with more expressive policies; however it is not known

how to incorporate searchability in these schemes, so we do
not discuss them here.

A related problem is that of cryptographic storage file
systems (CSFS) introduced by Blaze [5], in which files are
encrypted before being stored on an untrusted file server.
Fu [10] presents a CSFS system which allows for sharing of
access rights. Our approach of using a hierarchical encryp-
tion scheme differs from the traditional CSFS approach in
that in our case the encryption scheme itself enforces the ac-
cess structure. This reduces the number of keys we need to
store/retrieve, and guarantees consistent access rights when
different parties write to the same portion of a record. On
the other hand, it limits the types of access structures one
can have (in that the access structure must be hierarchical).

Other works consider improving ease of use of hierarchical
encryption schemes. Miklau and Suciu describe a policy lan-
guage for cryptographic access control [14]. Di Vimercati et
gal consider a model where the data is encrypted twice: once
by the data owner to reflect initial permissions, and again
by the server to accommodate changes in the access permis-
sions [9]. These reflect important questions for a practical
system, but are outside the scope of this paper.

Organization.
The rest of the paper flows as follows: In Section 2, we

describe the high-level outline of a PCE scheme. Then, we
present in Section 3 an example of how such a system might
be implemented in practice and discuss several practical is-
sues. In Section 4, we describe two solutions that fit into the
overall PCE framework . Section 5 presents an alternative
construction with somewhat different properties.

2. PATIENT CONTROLLED ENCRYPTION
In an electronic health record system, patients, healthcare

providers, and medical devices can upload health records
and retrieve and view them at a later time. Furthermore,
patients may delegate access rights and allow family, friends,
and designated healthcare providers to view or to edit parts
of their record. Patients and their delegates may wish to
efficiently perform searches in an efficient manner over part
or all of the record.

Let us now consider the challenges that arise in a naive
attempt to add security to such a system. We argued above
that we want to allow the patient to generate her own de-
cryption key. But in this case, how can she allow others to
access her record? Clearly she does not want to give out
her entire key, as that would allow the recipient to read and
modify all parts of her record.

In what follows, we describe the PCE proposal.
At a high level, a system using PCE allows the patient to

use her decryption key to generate subkeys which will allow
her delegates to search and access only certain parts of her
record.

The goals of PCE are:

Guarantee Strong Security In particular, PCE will (1)
guarantee the patient’s privacy: the patient should
have confidence that the administrators of the health
data server will not learn anything about the patient’s
record7, (2) guarantee security in the case of server
compromise: even if the server is compromised or stolen,
the patient should be certain that his data has not been

7with the exception of trivial information like the existence
and size of the record.



www.manaraa.com

Figure 1: A hierarchical health record

leaked, and (3) guarantee correctness of the health
record: the patient should be able to verify that no
one has tampered with his record.

Maintain Functionality We want to guarantee the above
security without compromising the functionality of the
server. This means the system should guarantee (1) ef-
ficient access to patient health records, (2) easy sharing
of parts of the record, and (3) efficient searching over
records.

2.1 Patient Health Structures
We assume that a patient’s record is organized into a hier-

archical data structure. There are multiple ways to decom-
pose medical data into a hierarchical representation based on
the use of different ontologies. For example, a record may be
decomposed at the top level into a set of mutually exclusive
high-level categories such as dental records, medical records,
mental health data, and a category representing the set of
all lab results accrued by the patient. The medical records
category might be further broken down into subcategories
for basic medical information (containing such subcategories
as prescribed medications, and known allergies), cardiologic
data, dermatologic data, etc. These categories in turn might
be subdivided according to which clinic provided the care,
then further according to doctor or date. We note that while
we have given an example of a record partitioned according
to a single hierarchy, our constructions can be extended eas-
ily to the case where there are several different hierarchies
which can be used to organize the patient’s records.

The key design criterion for PCE is that patients should
be able to delegate access to any subset of these categories
to their doctor, dentist, pharmacist, spouse, etc. We note
that while a patient might wish to share her entire record
with her doctor, she might not want to allow pharmacists,
billing staff, or lab technicians to see any more information
than is necessary. Thus, we propose a system in which a
patient can grant access to specific potions of the data. As
described above, the patient will generate and store her own
secret key, which we will call the root key. Then she can use
this root key to generate subkeys for various categories or
subcategories. Data in each subcategory will be encrypted
under the corresponding subkey. To delegate rights to read
a particular category, she will generate the corresponding
subkey, and send it to her doctor, dentist, etc.

Let us consider the sample hierarchy displayed in Figure 1.
Here, the patient might decide to grant her dentist access to
both the “Dental Records” category and the “Basic Medical

Info” category. This would allow the dentist to read all data
concerning dental clinic visits, dental x-rays, allergies, and
medications. However, the dentist would have no way of
decrypting any of the information in the patient’s mental
health records, or her cardiologic data, for example.

Note that the server that stores the health information
will not have access to the secret key, or any of the subkeys
given to the doctor, and thus will be unable to decrypt any
of the data.

One advantage of our hierarchical structure is that it is
easily extendable, in that the patient (and potentially other
parties to whom the patient grants the appropriate permis-
sions) can add additional subcategories within any existing
category. Thus, within the “Medications” category, Alice’s
dentist might add a new category for“Anaesthetics”, or“visit
4/2/09”. We will present a solution so that once the patient
gives her doctor access to her medications, if her dentist
adds a new subcategory, all documents in that subcategory
will automatically be accessible to the doctor.

Advantages The patient can easily grant access to a cate-
gory, without knowing all the types of files that might
eventually be included in it.

Similarly, doctors can add subcategories with arbitrary
names, without assistance from the patient. This will
be particularly useful if we can’t predict the names of
all possible subcategories, i.e., if a doctor needs to add
a category for a new type of test, or if categories are
labeled by visit dates.

Disadvantages The hierarchy is fixed in that there is only
one way in which we can partition the record. If we
want to give out access rights based on something else
(e.g. based on document type or sensitivity of data)
we will have to look at all the low-level categories in-
volved, and give a separate decryption key for each.
(e.g. in our example, giving a lab access to all X-rays
would require giving separate keys for“Dental X-rays”,
“Cardiologic X-rays”, and “Mental Health X-rays”.)

(This might be partially avoided if we have several
fixed hierarchies, and we encrypt each file under each
hierarchy.)

2.2 Preliminaries
Before we describe our proposal in more detail, we make

the following assumptions about the format of the patient’s
record. We assume that the patient’s record is stored as
a collection of entries, where each entry contains the name
of a file, the name of the smallest category containing that
file, a “locator tag” which the patient can use to refer to
the file, and an encrypted version of the file itself. (In our
proposed construction, the file name and category name will
be encrypted, and the tag will not reveal any information
about the contents of the file. See Section 2.5 for details.)

We also summarize some terminology we will use later:
For a hierarchical representation of data, we say that a given
category cat1 is an ancestor of another category cat2 if cat2

is contained within cat1. For example, in Figure 1, “Medical
Records” is an ancestor of “Allergies”. We call a category a
leaf category if it does not contain any other category. In
Figure 1, “Dental Clinic Visits”, “Dental X-Rays”, “Aller-
gies”, ... are all leaf categories. We sometimes refer to the
name of a category as its label.

Finally, we give some notation: We will use cat(i1,...,i`)

to specify a category in our hierarchy, where (i1) specifies
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that top level ancestor of the category, (i1, i2) specifies the
next ancestor down the chain, and so on. For example, for
the hierarchy in Figure 1, the “Allergies” category would
be specified by cat(MedicalRecords,BasicMedicalInformation,Allergies).
Similarly, we will use sk (i1,...,i`) to represent the decryption
key for category cat(i1,...,i`).

2.3 Basic PCE
Above, we described the high level functionality of our

PCE system. Here we will give a more formal description of
the required properties.

We say a PCE system consists of four algorithms:

• A key generation algorithm PCEKeyGen which gener-
ates a root secret key and (in a public key system)
public key for the patient.

• A key derivation algorithm PCEKeyDer which takes a
secret key for a category, and the name of one of its
subcategories, and generates the secret key for that
subcategory.

• An encryption algorithm Enc which takes a public key
and/or a secret key for a category, the name of that
category, and a file, and encrypts that file for that
category.

• A decryption algorithm Dec which takes the name of
a category and the secret key for that category, and a
ciphertext encrypted for that category, and produces
the decrypted file.

The two properties that we require are Correctness,
which asserts that any correctly encrypted document will be
successfully decrypted given the appropriate decryption key,
and Security, which says that an encryption of a document
in a given category will reveal no information about that
document as long as an adversary has not been given the
decryption key for an ancestor category, even if she obtains
arbitrarily many other decryption keys for other categories,
and has access to encryption and decryption oracles for all
categories (with the restriction that she cannot query the
decryption oracle on the challenge document).

Thus, the health data server will store only encrypted files.
When a patient wishes to grant access to a category to her
doctor, she will run PCEKeyDer to generate the appropriate
subkey and send it to the doctor. Then the doctor can
retrieve all the encrypted files in that category from the
server and decrypt them using this subkey. (For more details
on how this works in practice, see Section 3.)

2.4 Searchability of Encrypted Records
As mentioned above, our scheme includes an efficient

searching mechanism. This mechanism should satisfy the
following properties: Searchability , which means the health
server correctly returns the records which match the query,
and Privacy , which means the patient can perform the search
without revealing any information to the server (in this way,
security is still guaranteed even if server has been compro-
mised). Thus, we require that the server learn nothing about
what query is being made or about the documents or key-
words in the record. The server should only learn which
encrypted documents must be returned.

We will now show how to combine PCE with two existing
schemes for searchable encryption. Both of these schemes
search for exact matches. This means our database con-
sists of encrypted strings, we can choose a string, compute
a corresponding encrypted query, and send it to the server.

The server can then determine if the query string matches
any string in the database. It does this without seeing the
strings—instead we have a test algorithm, which takes an
encrypted query and a set of encrypted strings, and returns
true if there is a match, without revealing any other in-
formation. Thus, we can guarantee that, even given this
encrypted query, the server will not learn the string be-
ing queried for, or any other information besides which ci-
phertexts were matches. In a practical implementation, one
could combine this approach with some software for cluster-
ing related terms, so that a search would also return docu-
ments containing words that are similar to the query string.

Our design combines the idea of searchable encryption
with our patient controlled encryption. We will consider
that within a health record, each leaf category contains a
set of files (test records, records of a particular checkup,
medication listings, individual readouts from a medical de-
vice, etc). When a file is written we will assume that the
doctor also includes a list of keywords that a patient might
want to search for. This could be anything from a few tags
to all meaningful words in the file. These keywords will be
encrypted with a searchable encryption scheme, using the
appropriate subkey for that category, to form an encrypted
index. Then a doctor with decryption permissions for a
particular category will also be able to search within that
category for files which contain various keywords.

For simplicity our system as we present it here has sep-
arate sets of keys to handle encrypting keywords and gen-
erating search trapdoors. (This way we can describe the
searching algorithms independent of the basic PCE imple-
mentation.) These keys will be generated, delegated, and
distributed whenever the PCE keys are. In many cases,
there can be just one set of keys for both purposes; we chose
this separation only to simplify the description of the con-
structions.

We extend our notation to include four additional algo-
rithms:

• A key generation algorithm SrchKeyGen that generates
a root secret key and (in a public key system) a public
key for generating trapdoors for searching the patient’s
record.

• A key derivation algorithm SrchKeyDer that takes a
searching secret key for a category and the name of
one of its subcategories, and generates the secret key
for that subcategory.

• An index generation algorithm IndexGen that takes a
list of keywords and a public and/or secret key and
generates an encrypted index.

• A trapdoor generation algorithm Trap which takes the
decryption key for a category and a keyword, and gen-
erates a corresponding trapdoor.

• A search algorithm Search which takes an encrypted
index and a trapdoor, and returns any matching items.
In particular, if the trapdoor was generated for a given
category and keyword, the search should return locator
tags for all items within that category which include
that keyword.

2.5 Hiding the Category Labels
In some cases, the category labels themselves reveal sen-

sitive information. For example, if a doctor uploads a large
amount of data under the category “Cancer”, that might re-
veal that a patient is being tested or treated for cancer, even
if the data itself is encrypted.
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Thus, we want to be able to extend the above schemes so
that the labels themselves are encrypted. This brings up 3
problems.

1. We need some way of communicating the category
names to the doctor, in order to allow her to gener-
ate the appropriate subkeys and decrypt the record.
As described above, the doctor’s key allows her to de-
crypt documents in many categories. However, in or-
der to do this decryption she must first derive a key
for each appropriate leaf category. Doing this requires
that the doctor know the name of these subcategories.
(This is particularly an issue when new subcategories
can be added and category names can be chosen at
encryption time.)

2. The doctor and the health server (and the encryptor
who uploaded the file) must share some way of refer-
ring to that file or set of files without revealing any-
thing about their contents. In order to maintain ef-
ficiency, we do not want to require that the doctor
download the patient’s entire record in order to view
one file; ideally the doctor would only have to down-
load the file she is interested in. If the labels are pub-
lic, parties can upload data labeled by the name of the
category in which it belongs. Then the doctor can ask
the server which of the categories she has access to
actually contain data, and then request all encrypted
files in the desired categories. Now, we must find some
way to accomplish the same thing without revealing
the category labels to the server.

3. Finally, as described in section 2.1, we want to ensure if
a doctor has been given a key for a given category, then
he will be able to read all documents in the category.
In particular, if a new file or a new subcategory is
added, the doctor should automatically find it the next
time he views the patient’s record. We do not want to
require that the patient send the doctor the file names
or category names for all new documents. And we
must do this without revealing this information to the
health data server.

In what follows, we will discuss how to extend our schemes
to this case. First, we will require that each file be labeled
by a random “locator tag”. These tags will be generated by
the encryptor (e.g. the patient or his doctor), and the health
data server will store the tags together with the correspond-
ing encrypted files. However, these tags will not reveal any
information about the data in the associated files.

We shall now describe how we can build an encrypted
“directory” that lists all of the data files. A doctor will be
able to decrypt some portions of this directory (using the
key she was given by the patient), which will allow her to
identify the locator tags for the files she wants to download.
Finally, she will send these tags to the server, which will
send back the corresponding encrypted files.8 The key is
that this directory must be built in a distributed fashion,
with each encryptor adding entries encrypting the new tags
that she has generated.

This process works as follows: when a party uploads a
file, he will also create a directory entry, which includes the

8If the patient’s record is small, we can simply require the
doctor to download the entire encrypted record, avoiding
this second round of communication. However, we assume
that patients’ records will be fairly large (as they may con-
tain large files such as test results, x-rays, genetic data, etc.),
so the above approach will be much more efficient.

locator tag, category name, and file name. This entry will be
encrypted in such a way that only those parties allowed to
access the given category will be able to decrypt the message,
but the decrypting parties need not know the exact name of
the category in order to decrypt.

When a doctor wishes to view some files in a category, she
will download the entire directory and attempt to decrypt
each entry. For every file she is allowed to read, she will
thus discover the filename, category name, and locator tag.
She will decide which files she wants to download, send the
corresponding locator tags to the server, and receive the
associated encrypted files. Finally, she will use the category
names to generate the appropriate decryption keys and will
thus decrypt the desired files.

Thus, the key aspects we have to cover when describing
such a scheme are (1) how the directory entries are gener-
ated, and (2) how they are decrypted. As above, for simplic-
ity we will have a separate set of keys to handle generating
and decrypting the directory entries. Again, in many cases
these can be combined with the basic PCE keys. We add an
additional four algorithms:

• A key generation algorithm DirKeyGen that generates
a root secret key (and possibly a root public key) for
the directory information for the patient’s record.

• A key derivation algorithm DirKeyDer which takes a
directory secret key for a category and the name of one
of its subcategories, and generates a directory secret
key for that subcategory.

• An algorithm for generating encrypted directory en-
tries, FormDirEntry that takes a secret key for a cat-
egory and possibly a public key, a category name, a
file name, and a locator tag, and outputs an encrypted
directory entry.

• An algorithm for decrypting directory entries, DecDirEntry,
that takes a secret key and an encrypted directory en-
try for some category. If the key is supposed to give
access to that category, the algorithm will output the
category name, file name, and locator tag. If not, it
will output “failure”.

2.6 Public Key and Symmetric Key Schemes
In what follows, we will present both symmetric key and

public key schemes. Each has advantages and disadvantages,
so which is used will depend on the particular scenario in
which the health record system is used.

Public Key PCE.
In a public key scheme, anyone can encrypt data without

any secret information. Thus, in a public key PCE system,
we can allow anyone to encrypt documents for the patient’s
file, and upload rights do not imply the ability to read other
files in the same category. In practical terms, this means
that doctors, devices, etc, will be able to upload to a pa-
tient’s record without receiving any secret key (and without
getting the associated decryption permissions). See Section
3.1 for a discussion of how one might limit upload rights
in this situation. However public key schemes tend to be
slower, and when we also require searchability or hidden la-
bels, they seem to have inherent privacy weaknesses.
Advantages

Public Key: As described above, a public key scheme al-
lows a doctor or medical device to upload data given only
some basic public information, without obtaining any de-
cryption capabilities.
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Disadvantages
Efficiency: In general public key operations are much slower

than symmetric key primitives.
Efficiency of searchability: This will be the slowest option.

First, the search time will be linear: the server must test
each tag of each document in the appropriate category.

Privacy loss in searchability: There is also a significant
loss in privacy in the public key option: since anyone can
encrypt to any search term, any party with access to the
patient’s public key and history of query trapdoors can use
these trapdoors to determine what keyword was being searched
for: he simply encrypts each possible keyword (using the
patient’s public key), and tests to see which one returns a
match. (This is true in the basic PEKS of Boneh et al [6],
and seems to be inherent in the public key setting.)

Privacy loss when hiding labels: Our scheme for hiding the
labels will incur some privacy loss against a malicious health
server administrator who can edit the patient’s record: A
malicious party can encrypt fake locator tags under possible
category names and see if the doctor requests them. If the
doctor requests one of the fake tags, then it has determined
which category the doctor is requesting. However, we note
that this is an active attack, in that the adversary must
interact with the patient. An adversary who only has read
access to the record and log files of the server will not be
able to learn anything.

Symmetric Key PCE.
In a symmetric key scheme, one must know the decryp-

tion key in order to encrypt data. Thus, in a symmetric
key PCE system, anyone who can encrypt for a given cate-
gory can also decrypt any files in that category. In practical
terms, this means that the patient will have to issue an ap-
propriate decryption key to a doctor or a device for a given
category before they will be able to upload to this cate-
gory. Furthermore, the doctor or device will also be able to
read any data in that category. On the other hand, these
schemes tend to be much more efficient and have stronger
privacy guarantees.
Advantages

Efficiency: These constructions can rely primarily on sym-
metric key primitives for which we have very efficient instan-
tiations.

Efficiency of Searching: This scheme allows for fairly effi-
cient searches: the search time is proportional to the num-
ber of documents returned and the number of categories
searched.

Secure Searchability: We can guarantee that the only
thing that an adversary learns is which documents are re-
turned in each query. (This requires a slight variation on the
scheme we present, see remark 4.1 for details.) Besides that,
the only parties who can learn anything about the encrypted
data or the searches the parties perform will be those who
have already have access to the relevant files.

Secure Label Hiding: Our label hiding scheme is secure
against active attackers – the only parties who can determine
what category a particular encrypted file belongs to will be
those who have permissions to access it.
Disadvantages

Symmetric key: As described above, anyone who can up-
load to a given category can also decrypt all documents in
that category.

Particularly for the case of an untrusted device or piece
of software, this might be undesirable. Alternatively there

might be a situation where a doctor’s assistant is expected
to upload the doctor’s notes, but should not be able to see
anything else in the patient’s record. If this is undesirable,
one possible option is to subdivide each leaf category to have
a separate subcategory for each party who will be uploading.
Then the doctor’s assistant or the medical device will be
able to decrypt any information that they upload, but not
information provided by others.

Symmetric Key Searchability: As this is a symmetric key
scheme, the underlying SSE requires that the party who
forms the encrypted index must know the associated sym-
metric key, and thus must be able to perform arbitrary
searches.

3. WORK FLOW IN PRACTICE
We now describe a concrete instantiation of PCE. We will

consider interactions between a patient Bob, his doctor Al-
ice, and the server which stores Bob’s health records.

Creating User Accounts When patient Bob wants to sign
up for an account, he registers as he would in a tradi-
tional EMR system. He connects to the server (via an
SSL connection) and generates an account username
and password, to be used in the future to identify his
account and to authenticate to the server.

Next, an application will be downloaded to his ma-
chine. This application will run locally and will per-
form the following tasks: first it will generate a public
key pair (pkB , skB), which will be used to secure com-
munications with other parties in the system. Then
it will generate a root secret key skR under which all
Bob’s health records will be encrypted. Finally, it will
upload (via SSL) the public key pkB , which will be
stored as part of Bob’s health record. The skB and
skR will be stored locally on Bob’s machine.

At this point Bob may be offered the opportunity to
upload some basic information (e.g., birthdate, gen-
der, height, etc.). If he so chooses, Bob may enter
this information into the application. The application,
which as above runs locally, derives the appropriate
subkeys and from skR, and choose random locator tags
for each file. It uses the subkeys to encrypt Bob’s infor-
mation, and generate an encrypted index. It also uses
the subkeys to generate the encrypted dictionary entry
for each (file name, category name, locator tag) tuple.
Finally, it will send the tags and the encrypted infor-
mation and encrypted index to the server (via SSL).
The server will store each encrypted file and encrypted
index labeled by the corresponding tag.

Creating Provider Accounts When a provider organi-
zation wants to sign up for an account, it will register
as in a traditional EMR system: it will connect to the
server via an SSL connection and establish an account
username and credentials, which will be used in the
future to identify the account and to authenticate to
the server. (A large organization will also have the
opportunity to dynamically upload public keys corre-
sponding to different parties within its staff.)

Before an Appointment When Bob makes an appoint-
ment to see his provider, they exchange user names.
(And if the provider is a large organization, Bob may
also learn the identifier for the specific doctor he will
be seeing.)
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Next, the doctor requests access to any necessary in-
formation as follows: The doctor logs in to the health
server and enters Bob’s user name, and her application
downloads Bob’s public key. Then the doctor encrypts
the request for information under Bob’s public key and
upload the result to the server. Similarly, the doctor
can request permissions to upload files to certain por-
tions of the record.

Bob logs in to the server and his application down-
loads and decrypts this request and then presents it
to him along with the doctor’s username (and identi-
fier). It also downloads the doctor’s public key. If Bob
agrees to allow access to the requested information,
the application uses his root key skR to locally gener-
ate subkeys for the appropriate categories. It encrypts
these under the doctor’s public key, and uploads them
to the server.

The doctor logs in to the server, and her application
downloads the encrypted subkeys and decrypts them.
It also downloads the patient’s encrypted directory,
and using the subkeys it decrypts the (file name, cate-
gory name, locator tag) tuples for all the files that the
doctor has access to. It presents these file names to
the doctor (organized using the category names), who
then selects the categories or individual files she wants
to download. The application sends the corresponding
locator tags to the server, and obtains the associated
encrypted files. Finally, it decrypts the received files
using the previously decrypted subkeys, and displays
them to the doctor. When the doctor is done accessing
this record, the application deletes all subkeys. (They
can be retrieved again from the server when they are
needed.)

After an appointment The doctor can request permis-
sions to read and write additional categories as above.

When the doctor wants to upload data to Bob’s health
record, she logs in to the health server. Her applica-
tion downloads the necessary encrypted subkeys from
the server. If no such keys have been uploaded, she
requests them from Bob as above. The application
decrypts the necessary subkeys, encrypts the data un-
der those subkeys, and generates a corresponding en-
crypted index. For each file it also chooses a random
locator tag and generates an encrypted directory entry.
Finally, the application uploads the encrypted data,
the encrypted index, the locator tag, and the directory
entry for each file. When the doctor is done accessing
this record, the application deletes all subkeys. (They
can be retrieved again from the server when they are
needed.)

The doctor can also choose to search over the data that
she has access to, without downloading all of it. In
this case she logs in to the server and her application
downloads the encrypted subkeys. Then it decrypts
and identifies the appropriate subkey(s). It also down-
loads the encrypted directory, and decrypts entries for
the files the doctor has access to. It presents the re-
sulting file names to the doctor who selects those over
which the search will be conducted. Then the appli-
cation uses his subkeys to generate the appropriate
trapdoors, which it sends to the server along with the
locator tags for all files being searched. The server
applies the search trapdoors to the indexes associated

with the given tags, and returns any encrypted files for
which a match is detected. Once again, all subkeys are
deleted afterwards.

Finally, the doctor can delegate decryption or search-
ing rights to any of the data that she has access to
(for instance if she wants to allow the office admin to
see visit information for billing). In this case she de-
termines the categories to which she wishes to grant
access. Then she logs in to the server, and her appli-
cation downloads her encrypted subkeys and decrypts
them. It then generates keys for the categories that are
to be delegated, which the doctor can then encrypt un-
der the admin’s public key and transfer via the health
server as above.

3.1 Key Management and related issues
Key Revocation A patient always has the option of chang-

ing (essentially revoking) keys by decrypting portions
of her record locally and re-encrypting with new sub-
keys. This might be desirable if a patient suffers a
key compromise or wants to discontinue access to her
health record for a particular provider, or family mem-
ber, or other proxy.

Emergency response Patients might be given the option
to wear or carry an enhanced medic-alert bracelet or
similar device which might function like a barrier that
one must break for engaging a fire alarm: it would
contain a tamper-evident seal which could be broken
to obtain access to the patient’s medical records.

Patient Key Management Escrowing of keys should be
recommended to patients when setting up their ac-
counts. Escrowing can be done formally through a
professional service or informally by sharing keys with
family members or via a threshold scheme. In addition
or as an alternative, patients could keep a hardware
device that stores a back-up of their root secret key:
skR. In some cases, third party escrow agents could
also serve emergency response requirements.

Doctor/Device Key Management In the PCE system,
doctors could potentially have to store, manage, and
protect local copies of secret keys for each their pa-
tients. A hierarchically organized system has the ad-
vantage that in many situations, this would only be
a single secret key from each patient. However, doc-
tors could avoid even this burden by simply download-
ing encrypted keys from the health records server (en-
crypted by the patient under the doctor’s public key)
whenever needing access to a patient’s record, and then
deleting the locally decrypted copy of the secret key
once the record is decrypted.

Usability While the PCE system aims to give the patient
full control over who can access her record, it puts
the burden on the patient to properly decide which
providers should have access to which parts of her
record. This burden is the same in any existing health
records system which uses access control as a means
to patient privacy. To help the patient easily navi-
gate such choices, we suggest that the system might
be preset with several different options defining default
hierarchies and sets of keys to issue to doctors, family
members, devices, etc. For example, one default op-
tion could be to provide access to the Basic Medical
Information category to all of the patient’s doctors. A
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patient can choose to accept these defaults or to make
her own choices. Even if she chooses a custom set-
ting, she might choose to set some standard policies
for what to release to different types of parties. Or,
she could assume full control, and decide whether or
not to grant access each time she is contacted by a
doctor, family member, device, etc. Thus, the PCE
system can accommodate both the basic user and a
privacy-concerned user who wants full control.

4. BUILDING PCE

4.1 Solution 1: Public Key PCE
Here we show a construction that satisfies the properties

in section 2, and that allows for public key encryption.
In our basic scheme we need the following four algorithms:

• A key generation algorithm PCEKeyGen(1k)→ (PK root ,
SK root) which takes as input the security parameter k
and generates a root decryption key SK root and a pub-
lic key PK root for the patient’s record.

• The key derivation algorithm PCEKeyDer(sk (ii,...,i`−1),

(i1, . . . , i`)) → sk (i1,...,i`) takes as input the name of
a category (specified as a hierarchical list (i1, . . . , i`)),
and the decryption key sk (i1,...,i`−1) for the parent cat-

egory cat(i1,...,i`−1) (or SK root for ` = 1). It outputs a
decryption key sk (i1,...,i`) for category cat(i1,...,i`).

• The encryption algorithm Enc(PK root , (i1, . . . , i`),m)→
c takes as input a public key and a category specified
as a list (i1, . . . , i`) and a message m. It outputs an
encryption of m for category cat(i1,...,i`).

• The decryption algorithm Dec(sk (i1,...,i`), c)→ m takes
as input a category name (i1, . . . , i`), a correspond-
ing decryption key sk (i1,...,i`) and a ciphertext c. It
outputs decrypted message m if if the ciphertext was
formed correctly for category cat(i1,...,i`).

4.1.1 Basic Approach
A basic solution in this case is to use a CCA-secure Hier-

archical Identity Based Encryption (HIBE) scheme. Shamir
[18] proposed the concept of IBE as an encryption scheme
in which any string (e.g. a name or email address) could be
used as a public key. In the traditional IBE setting, there
would also be a trusted authority who would issue the corre-
sponding decryption key to the appropriate parties. HIBE,
introduced by Gentry and Silverberg [11], allows for hierar-
chical identities : an encryptor encrypts a message using a
list of strings id1, . . . , idL, and a party who had obtained the
decryption key for id1 could then delegate a key for id1, id2

for any string id2, and so on.
The key innovation with the hierarchical structuring in

PCE is that the patient plays the role of the trusted party.
We replace the “identities” with the categories in hierarchi-
cal health record. Thus, in order to delegate access rights
for a given category, the patient will generate the appropri-
ate HIBE decryption key using that category as the identity,
and give the resulting key to the doctor or friend or family
member. From this key, the recipient will be able to gen-
erate keys for all subcategories using the HIBE derivation
algorithm.

Thus, we assume we are given a CCA secure HIBE scheme9

9We can obtain an efficient CCA secure HIBE by apply-
ing the techniques of Canetti, Halevi, and Katz [7] to the
Gentry-Silverberg HIBE [11].

consisting of algorithms HIBESetup(1k), which generates pa-
rameters params and a master secret key mk for the author-
ity, HIBEKeyGen(sk (id1,...,id`−1), (id1, . . . , id`)), which uses
decryption key sk (id1,...,id`−1) to generate decryption key

sk (id1,...,id`), HIBEEnc(m, params, (id1, . . . , id`)), which en-
crypts a messagem to identity (id1, . . . , id`), and HIBEDec(c,
sk (id1,...,id`), (id1, . . . , id`)), which uses decryption key
sk (id1,...,id`) to decrypt a ciphertext intended for identity
(id1, . . . , id`).

We build a PCE scheme as follows:
PCEKeyGen(1k): Run HIBESetup(1k) to obtain params,mk .

Output PK root = params, SK root = mk .
PCEKeyDer(sk (i1,...,i`−1), (i1, . . . , i`)): Run HIBEKeyGen(

sk (i1,...,i`−1), (i1, . . . , i`)) and output the resulting
sk (i1,...,i`).

Enc(PK root , (i1, . . . , i`),m): Run HIBEEnc(m,PK root ,
(i1, . . . , i`)), and output the resulting ciphertext c.

Dec(sk (i1,...,i`), (i1, . . . , i`), c): Run HIBEDec(c, sk (i1,...,i`),
(i1, . . . , i`)), and output the resulting message m.

Security The security properties of PCE follow directly from
the security properties of the underlying HIBE.

4.1.2 Public Key Searchable Encryption
We can extend the public key solution suggested in Sec-

tion 4.1, so as to combine it with a searchable encryption
scheme that allows for public key encryption. For this, we
propose using a scheme developed by Boneh et al. referred
to as PEKS [6]. The high-level idea is that when the doc-
ument is uploaded, each keyword is also encrypted, using
the PEKS scheme, and the encryption is stored along with
the encrypted document as a tag. Then the owner of the
corresponding decryption key can generate a trapdoor for
a particular keyword, which will allow the server to test
whether a particular tag is a match (without learning the
search keyword).

We need to combine the PEKS scheme with the hierar-
chical encryption scheme used for PCE. This means that
the PEKS keyword encryption will use the appropriate en-
cryption key for the given category, and the corresponding
decryption key will be required to generate the trapdoor.
The result is that anyone who can decrypt a given cate-
gory can also perform any search over that category. This is
essentially the hierarchical identity based PEKS scheme as
described in [1].

The resulting scheme is as follows:
SrchKeyGen(1k): Run HIBEPEKSSetup(1k) to obtain

Srchparams,Srchmk . Output SrchPK root = Srchparams,
and SrchSK root = Srchmk .

SrchKeyDer(Srchsk (i1,...,i`−1), (i1, . . . , i`)): Run HIBEPEKS-

KeyGen(Srchsk (i1,...,i`−1), (i1, . . . , i`)) and output the
resulting Srchsk (i1,...,i`).

IndexGen(PK root , (i1, . . . , i`),word1, . . . ,wordN ): where
PK root = Srchparams. For each keyword wi run HIBE-
PEKS(wi,Srchparams, (i1, . . . , i`)) to obtain tag ti. Out-
put (t1, . . . tN ).

Trap(Srchsk (i1,...,i`), (i1, . . . , i`),word): Run HIBEPEKSTrap(
Srchsk (i1,...,i`), (i1, . . . , i`),word), and output the re-
sulting trapdoor T .

Search(Index , T ): For each tag t of each document in the in-
dex, run HIBEPEKSTest(t, T ). Return the documents
which are paired with a tag t for which this procedure
outputs 1.

Security The weaker security property described in 2.6 fol-
lows directly from the properties of the HIBEPEKS scheme.
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4.1.3 Hiding Labels in a Public Key scheme
If we want to hide the category labels, we must first ensure

that the PCE encryption or searchable encryption does not
leak any information on the category being used. Luckily,
we can simply replace the HIBE with an anonymous HIBE
[1], and we get the necessary guarantee.

We will also use the anonymous HIBE to form the en-
crypted directory as follows:

A party who wants to upload a file chooses a random
string as a locator tag. It then uses the HIBE to encrypt
the tag, filename, and category under identity i1 and (i1, i2),
...., and (i1, . . . , i`). It uploads all of these to the server.

A party who wants to find all files in a given category first
generates the key for that category. It then downloads the
directory and uses the HIBE decryption to attempt to de-
crypt each entry in the directory. For every element which
decrypts successfully to an element of the right form, it out-
puts the filename and locator tag.

Thus, we have the following algorithms:

DirKeyGen(1k): Run HIBESetup(1k) to obtain Dirparams,
Dirmk . Output DirPK root = Dirparams, and
DirSK root = Dirmk .

DirKeyDer(Dirsk (i1,...,i`−1), (i1, . . . , i`)): Run HIBEPEKS-

KeyGen(Dirsk (i1,...,i`−1), (i1, . . . , i`)) and output the re-
sulting Dirsk (i1,...,i`).

FormDirEntry(DirPK root , (i1, . . . , i`), locatortag ,filename):
where PK root = Dirparams. For each j ∈ {1, . . . , `}
run HIBEEnc((locatortag , (i1, . . . , i`),filename),
Dirparams, (i1, . . . , ij)) to obtain cj . Output (c1, . . . c`).

DecDirEntry(Dirsk (i1,...,iL), (c1, . . . , c`)): For each j ∈ 1, . . . , `,
run HIBEDec(Dirsk (i1,...,iL), cj). If any of the decryp-

tions succeeds10 we output the resulting locatortag ,
(i1, . . . , i`),filename.

Security The security (against passive servers) follows
from the anonymity property of the anonymous HIBE.

4.2 Solution 2: Symmetric key PCE
Here we show a construction for a similar, hierarchical set

of categories, but which only allows for secret key encryp-
tion. The result is a construction built primarily from simple
symmetric key primitives, which is much more efficient than
the previous solution, but which does not allow public key
encryption.

In our basic scheme we need the following four algorithms:

• The key generation algorithm PCEKeyGen(1k)→ SK root

which takes as input the security parameter k and gen-
erates a root decryption key for the patient SK root .

• The key derivation algorithm PCEKeyDer(sk (i1,...,i`−1),

(i1, . . . , i`)) → sk (i1,...,`) takes as input the name of
a category (specified as a hierarchical list (i1, . . . , i`)),
and the decryption key sk (i1,...,i`−1) for the parent cat-

egory cat(i1,...,i`−1) (or SK root for ` = 1). It outputs a
decryption key sk (i1,...,i`) for category cat(i1,...,i`).

• The encryption algorithm Enc(sk (i1,...,i`), (i1, . . . , i`),m)
→ c takes as input a public key, a message m, a cate-
gory name specified as (i1, . . . , i`), and the correspond-
ing decryption key sk (i1,...,i`). It outputs an encryption
of m for category cat(i1,...,i`).

10We can easily modify the HIBE so that it rejects messages
encrypted under the wrong identity by appending some fixed
string to the front of each message encrypted – a ciphertext
decrypted with the wrong key will have the wrong form.

• A decryption algorithm Dec(sk (i1,...,i`), (i1, . . . , i`), c)→
m takes as input the name of a category ((i1, . . . , i`)), a
corresponding decryption key sk (i1,...,i`) and a cipher-
text c. It outputs decrypted message m if the cipher-
text was formed correctly for category cat(i1,...,i`).

4.2.1 Basic Approach
We will construct our PCE system from a pseudoran-

dom function (or a keyed block cipher) F : {0, 1}s(k) ×
{0, 1}p(k) → {0, 1}p(k) for some polynomials s, p, and a CCA-
secure encryption scheme, (CCAEnc,CCADec), with keyspace

{0, 1}p(k).

PCEKeyGen(1k): Choose SK root ← {0, 1}p(k).

PCEKeyDer(sk (i1,...,i`−1), (i1, . . . , i`)): Compute and output

sk (i1,...,i`) = Fsk(i1,...,i`−1)(i`).

Enc(sk (i1,...,i`), (i1, . . . , i`),m): Compute and output c =
CCAEnc(sk (i1,...,i`),m).

Dec(sk (i1,...,i`), (i1, . . . , i`), c): Compute and output m =
CCADec(sk (i1,...,i`), c).

Security The security of the scheme can be trivially derived
from the pseudorandom properties of the PRF and the CCA
security of the encryption. (Recall also that we only encrypt
files in leaf categories, so each key is used either for delega-
tion or for encryption, but not for both.)

4.2.2 Symmetric Key Searchable Encryption with Pre-
processing

Curtmola et al [8] presented a very efficient scheme for
symmetric key searchable encryption (SSE) with preprocess-
ing. In their scenario there is a single user, who encrypts a
set of documents along with an index specifying in which
documents each keyword appears. Both encrypted index
and encrypted documents are then sent to the server. The
user can use her secret key to generate search trapdoors for
particular keywords. The trapdoors do not leak any infor-
mation about the corresponding keywords, but they can be
combined with the encrypted index to determine which doc-
uments contain those keywords.

Such a system can be combined with the symmetric key
PCE construction described in section 4.2. The main idea
is that we store an index for each category. Then, anyone
with the decryption key for that category can generate the
appropriate trapdoors.

Thus, the construction proceeds as follows:

SrchKeyGen(1k): Choose SrchSK root ← {0, 1}p(k).

SrchKeyDer(Srchsk (i1,...,i`−1), (i1, . . . , i`)): Compute and out-

put Srchsk (i1,...,i`) = FSrchsk(i1,...,i`−1)(i`).

IndexGen(Srchsk (i1,...,i`), (i1, . . . , i`),word1, . . . ,wordN ):
Generate an index I from word1, . . . ,wordN . Com-
pute SSEEnc(Srchsk (i1,...,i`), I) to form a new search-
able encrypted index CI . Output CI .

Trap(Srchsk (i1,...,i`), (i1, . . . , i`),word): Run SSETrap(
Srchsk (i1,...,i`), (i1, . . . , i`),word), and output the re-
sulting trapdoor T .

Search(CI , T ): Find the appropriate encrypted index CI for
this category. Run SSESearch(CI , T ) to find the iden-
tifiers for the appropriate encrypted documents, and
return those ciphertexts.
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Remark 4.1. We note that by reusing the same key to
generate many indexes for the same category, we obtain
somewhat weaker security properties than those guaranteed
by Curtmola et al. (For example, the server may be able
to tell when two files within the same category share a key-
word, although it will not know what that keyword is.) If we
want to obtain the full security, there are two options: one
is that we require that each time a party wants to upload
to a category, she downloads and decrypts the entire index
for that category, updates it with the new documents, and
then uploads the encrypted index and new encrypted docu-
ments to the server. The second option is that the uploader
does not directly add information to the index. Instead she
encrypts the document identifier and keyword list directly
to the patient, who periodically downloads and decrypts all
new document information in each category, downloads and
decrypts the indexes for those categories, updates the in-
dexes and reencrypts them, and uploads the new encrypted
indexes to the server. An advantage to this approach is that
the patient has control of all updates. The disadvantage
is that there will be a delay between the time when docu-
ments are uploaded, and the time when they are available
for searching.

Security With the above modification, the security follows
from the pseudorandomness of the PRF and the security of
the SSE.

4.2.3 Hiding category labels
First we note that the PCE and searchable encryption

described above completely hides the category used—as the
category is only used as input to the PRF F . However,
creating the directory itself is somewhat more difficult. Here,
we will need to make use of some public key primitives as
well.

We will construct the directory as follows:
First, our key derivation generates two additional keys.

One is a MAC key. The other is used to generate a pub-
lic/private key pair Dirpk (i1,...,i`)

. Furthermore, each up-
loader receives, as part of their decryption key for cate-
gory cat(i1,...,i`), the public keys for all ancestor categories:
Dirpk (i1), . . . ,Dirpk (i1,...,i`)

.
Now when a party wants to upload a file, he first chooses

a random locator tag. Next he computes a MAC on the tag,
category name, and file name. Then for each of Dirpk (i1), . . . ,
Dirpk (i1,...,i`)

he will encrypt the tag, category name, file
name, and the MAC under Dirpk (i1,...,ij). The directory

entry includes all of these ciphertexts.
A party who wants to find all files in a given category first

generates the key for that category. She then downloads the
directory and uses the public key decryption to attempt to
decrypt each entry in the directory. For every element which
decrypts successfully to an element of the right form, it will
output the filename, category name, and locator tag.

Thus, we have the following algorithms:

DirKeyGen(1k): Choose SrchSK root ← {0, 1}p(k).

DirKeyDer(Dirsk (i1,...,i`−1), (i1, . . . , i`)): Parse Dirsk (i1,...,i`−1)

as (pk (i1), . . . , pk (i1,...,i`−1), s(i1,...,i`−1)). Compute

s(i1,...,i`) = Fs(i1,...,i`−1)(“Del”||i`).

Compute t = Fs(i1,...,i`)(“PK”), and (pk (i1,...,i`)
,

dk (i1,...,i`))← PKKeyGen(t).

Output sk (i1,...,i`) = (pk (i1) . . . , pk (i1,...,i`)
, s(i1,...,i`))

FormDirEntry(Dirsk (i1,...,i`), (i1, . . . , i`), locatortag ,filename):
Parse Dirsk (i1,...,i`) as (pk (i1), . . . , pk (i1,...,i`)

, s(i1,...,i`)).

Compute MACkey = Fs(i1,...,i`)(“MAC”). Compute

σ ← MAC(MACkey , locatortag ,filename, (i1, . . . , i`)).

For each j ∈ {1, . . . , `} run PKEnc(pk (i1,...,ij)(locatortag ,

(i1, . . . , i`),filename, σ) to obtain cj . Output (c1, . . . c`).

DecDirEntry(Dirsk (i1,...,iL), (c1, . . . , c`)): Parse Dirsk (i1,...,iL)

as (pk (i1), . . . , pk (i1,...,iL), s(i1,...,iL)).

Compute t = Fs(i1,...,iL)(“PK”), and (pk (i1,...,iL),

dk (i1,...,iL))← PKKeyGen(t).

For each j ∈ {1, . . . , `} run PKDec(dk (i1,...,iL), cj). If
decryption succeeds, parse the result as (locatortag ,
(i1, . . . , i`),filename, σ). Compute MACkey =
Fs(i1,...,i`)(“MAC”). Compute MACVer(MACkey , σ,

(locatortag , (i1, . . . , i`),filename)). If it succeeds, out-
put (locatortag , (i1, . . . , i`),filename)).

If there is no j for which decryption and MAC verifi-
cation succeeds, output “Failure”.

Security The security of the scheme relies on the pseudo-
randomness of the PRF, and the CPA security of the public
key encryption, and the unforgeability of the MAC. Here we
get security even against active attackers because no party
who does not have access to the decryption key for the leaf
category will be able to generate a valid signature on a new
string. There is no way for the adversary to distinguish an
invalid ciphertext from a non-match, so he will not learn
anything by creating extra entries, or modifying existing en-
tries.

5. A DIFFERENT RECORD STRUCTURE
Here we present a different approach, which provides more

flexibility in choosing which hierarchy to use. In the previous
two constructions, the hierarchy was fixed from the begin-
ning. However, there are potentially many different ways to
organize health data in a hierarchy. One is by medical area
as described above. However, one might imagine another
organization, by document type, where one category would
contain all the lab test results, one would contain notes from
doctors, and a third readings from various devices. This
might for instance make it easier to give a medical lab write
access for all necessary files. Similarly, one might organize a
record by sensitivity level, so that it would be easy to give
decryption rights to all non-sensitive data at once.

Here we will see a scheme which allows a patient to choose
a different hierarchy each time she gives out a decryption
key. Essentially, we have a standard set of lowest level cat-
egories. For each, we define a fixed public value, which is
the same for all patients. Each patient chooses a root key
as usual, which defines a decryption key for each of these
categories. When the patient wishes to give access rights
to her doctor, she can choose any subset of these categories
and issue a single key, from which keys for all these cate-
gories can be computed. Thus, we can essentially use any
hierarchy we choose.

We note that it would not be hard to extend the previ-
ous scheme to allow for several fixed hierarchies. However,
there will be an efficiency loss for each additional hierarchy,
so there is a limit to how much flexibility an efficient system
could provide. On the other hand, with the approach de-
scribed in this section, one could have an unlimited number
of hierarchies with no efficiency loss.
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With this approach, the health record is divided into a set
of leaf categories. When Alice wants to grant access rights
to her doctor, she can choose to allow access to any subset of
those categories. As there might be many of these, our goal
is to allow Alice to compute one concise key that will allow
her physician to access to documents in any of the desired
categories.

Advantages This has the advantage that it allows for very
flexible structures; Alice can partition her record in
any arbitrary way and she will still be able to give her
doctor a concise key. Furthermore, she can choose a
different partitioning each time she gives out a key.

Disadvantages Alice must know exactly which files (or
category names) she wishes to grant others access to
before she can generate the decryption key. For exam-
ple, if we have a separate category for each visit date,
she will have to know all appropriate dates before she
can issue a decryption key.

Efficiency: Our constructions rely on RSA group op-
erations, which are much less efficient than symmetric
key operations.

Notation.
We use cat ij to denote the leaf category with name ij .

Here keys correspond to sets of leaf categories. If S =
{i1, . . . , in} is a set of leaf categories, then we denote the
corresponding secret key skS . We also sometimes use the
notation catS to denote cat i1 ,∪, . . . ,∪, cat i` .

Thus, in our basic scheme we need the following four al-
gorithms:

• The key generation algorithm PCEKeyGen(1k)→ SK root

which takes as input the security parameter k and gen-
erates a root decryption key for the patient SK root .

• The key derivation algorithm PCEKeyDer(skS , S, S
′)→

skS′ takes as input a key, the of names of the corre-
sponding set of categories (specified by the set S =
{i1, . . . , in}), and a subset S′ ∈ S of those categories.
It outputs a decryption key skS′ for catS′ .

• The encryption algorithm Enc(sk j , j,m) → c takes as
input a public key, a message m, a category name j,11

and the corresponding decryption key sk{j}. It outputs
an encryption of m for category cat{j}.

• A decryption algorithm Dec(sk{j}, j, c) → m takes as
input the name of a category j, a corresponding de-
cryption key sk{j}, and a ciphertext c. It outputs de-
crypted message m if the ciphertext was formed cor-
rectly for category catj .

5.1 Basic Approach
Our construction is based on a scheme originally proposed

for concisely transmitting large numbers of keys in broadcast
scenarios [4].

The PCE scheme works as follows: Let h be a collision
resistant hash function that maps strings to primes.

Let H : {0, 1}∗ → {0, 1}f(k) be a publicly available hash
function which we will model as a random oracle.

Finally, let CCAEnc,CCADec be a CCA-secure encryption
scheme, with keyspace {0, 1}f(k).

11Here we require that documents are contained in a single
category. Our scheme generalizes in a straightforward way
to the case where documents can be in several categories,
and a party must have permissions for all categories in order
to access the document.

PCEKeyGen(1k): Generate RSA modulus N = pq for primes
p, q. Choose random y ← Z∗N . Output SK root =
(p, q, y).

PCEKeyDer(skS , S, S
′): Parse S, S′ as sets of strings, and

parse skS = (N, yS) (or SK root = (p, q, yS))

First we will compute ej = h(j) for each j ∈ S. Then

skS′ should be (N, y
1Q

j∈S′ ej mod N). Note that this
can be computed in two ways: Using SK root = (p, q),
we can compute it directly. (This is what the patient

will do.) Alternatively, if we know yS = y
1Q

j∈S ej

mod N , and S′ ⊂ S, then we can compute skS′ =

(N, y
Q

j∈S\S′
S mod N). (This is how all those who

have been delegated access rights will compute their
encryption and decryption keys.)

Enc(sk{j}, j,m): where skS = (N, yej mod N) for ej =
h(j). Compute and output c = CCAEnc(H(skS),m).

Dec(sk{j}, j, c): where sk{j} = (N, yej mod N) for ej =
h(j). Compute and output m = CCADec(H(skS), c).

The security of this scheme under the strong RSA as-
sumption can be trivially derived from the security of the
construction in [4], which is based on a lemma by Shamir
[17].

5.2 Adding Searchability
We note that this scheme can be easily extended to al-

low efficient searching over using the same techniques as in
Section 4.2.

5.3 Hiding Category Labels
We use roughly the same approach as that presented in

Section 4.2. However, here we assume that when the patient
sends a subkey to the doctor, he also sends the name of all
the leaf categories that it corresponds to. (Note that, unlike
the scenario in Section 4, here we already require that the
patient determine all leaf categories when the subkeys are
generated.)

Now, when generating the encrypted directory, we do not
encrypt under keys for all possible ancestor categories, since
there may be many of these. Instead, we only encrypt under
the key for the given leaf category. We also add a pseudoran-
dom identifier for the category, generated using the category
subkey.

Then, when the doctor wants to download files in a given
category, he can generate the appropriate identifier and de-
crypt the entries which are listed with that identifier. He will
identify the files that he wishes to view, and send the corre-
sponding locator tags to the server to obtain the encrypted
files.

Thus, we have the following algorithms:
DirKeyGen(1k): Generate RSA modulus N = pq for primes

p, q. Choose random y ← Z∗N . Output DirSK root =
(p, q, y).

DirKeyDer(skS , S, S
′)i`)): First we will compute ej = h(j)

for each j ∈ S. Then compute and output skS′ =

(N, y
1Q

j∈S′ ej mod N) as described in the PCEKeyDer
algorithm above.

FormDirEntry(Dirsk{j}, j, locatortag ,filename): Compute s =
H(DirskS). Compute MACkey = Fs(“MAC”). Com-
pute σ ← MAC(MACkey , locatortag ,filename, j).

Compute dk = Fs(“Enc”), and run CCAEnc(dk ,
(locatortag ,filename, j, σ)) to obtain c.
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Public Key Symmetric Flexible
PCE Key PCE PCE

Properties Sec 4.1 Sec 4.2 Sec 5

Upload without
Key Distribution Yes No No
Flexible
Hierarchies No No Yes
High
Efficiency No Yes No
Easy to Add
Categories Yes Yes No

Table 1: Properties of the schemes presented in Sec-
tions 4 and 5.

Compute identifier = Fs(“Identifier”||j)
Output (identifier , c).

DecDirEntry(Dirsk{j}, j, (identifier ′, c)): Compute MACkey ,
dk , identifier for category catj as above. If identifier 6=
identifier ′, output “Failure”.

Otherwise, run PKDec(dk (i1,...,iL), cj). If decryption
succeeds, parse the result as (locatortag ,filename, j, σ).
Compute MACVer(MACkey , σ,
(locatortag , (i1, . . . , i`),filename)). If it succeeds, out-
put (locatortag ,filename, j). If not, output “Failure”.

6. CONCLUSIONS
We have presented several schemes for Patient Controlled

Encryption, each appropriate for a different setting. Ta-
ble 1 summarizes the advantages and disadvantages of these
schemes. For a concrete design, we suggest that one follow
the set-up described in Section 3. We conclude that it is pos-
sible and practical to achieve secure and private EMR while
maintaining efficiency and functionality, including searcha-
bility and delegation.
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